Neural Model Identification Using Local Robustness Analysis

نویسندگان

  • Héctor Allende
  • Claudio Moraga
  • Rodrigo Salas
چکیده

A local robustness approach for the selection of the architecture in multilayered feedforward artificial neural networks (MLFANN) is studied in terms of probability density function (PDF) in this work. The method is used in a non-linear autoregressive (NAR) model with innovative outliers. The procedure is proposed for the selection of the locally most robust (around a particular sample) MLFANN architecture candidate for exact learning of a finite set of the real sample. The proposed selection method is based on the output PDF of the MLFANN. As each MLFANN architecture leads to a specific output PDF when its input is a distribution with heavy tails, a distance between probability densities is used as a measure of local robustness. A Monte Carlo study is presented to illustrate the selection method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Double Cracks Identification in Functionally Graded Beams Using Artificial Neural Network

This study presents a new procedure based on Artificial Neural Network (ANN) for identification of double cracks in Functionally Graded Beams (FGBs). A cantilever beam is modeled using Finite Element Method (FEM) for analyzing a double-cracked FGB and evaluation of its first four natural frequencies for different cracks depths and locations. The obtained FEM results are verified against availab...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001